Quadratic 0–1 optimization using separable underestimators

نویسندگان

  • Christoph Buchheim
  • Emiliano Traversi
چکیده

Binary programs with a quadratic objective function are NP-hard in general, even if the linear optimization problem over the same feasible set is tractable. In this paper, we address such problems by computing quadratic global underestimators of the objective function that are separable but not necessarily convex. Exploiting the binarity constraint on the variables, a minimizer of the separable underestimator over the feasible set can be computed by solving an appropriate linear minimization problem over the same feasible set. Embedding the resulting lower bounds into a branch-and-bound framework, we obtain an exact algorithm for the original quadratic binary program. The main practical challenge is the fast computation of an appropriate underestimator, which in our approach reduces to solving a series of semidefinite programs. We exploit the special structure of the resulting problems and propose a tailored coordinate-descent method for their solution. Our extensive experimental results on various quadratic combinatorial optimization problems show that our approach outperforms both Cplex and the related QCR method. For the quadratic shortest path problem, we thus provide the fastest exact approach currently available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monomial-wise optimal separable underestimators for mixed-integer polynomial optimization

In this paper we introduce a new method for solving box-constrained mixed-integer polynomial problems to global optimality. The approach, a specialized branch-and-bound algorithm, is based on the computation of lower bounds provided by the minimization of separable underestimators of the polynomial objective function. The underestimators are the novelty of the approach because the standard appr...

متن کامل

Convex Underestimation of C2 Continuous Functions by Piecewise Quadratic Perturbation

Clifford A. Meyer and Christodoulos A. Floudas Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA Abstract This paper presents an efficient branch and bound approach to address the global optimization of constrained optimization problems with twice differentiable functions. A lower bound on the global minimum is determined via a convex nonlinear programming probl...

متن کامل

A New Class of Improved Convex Underestimators for Twice Continuously Differentiable Constrained NLPs

We present a new class of convex underestimators for arbitrarily nonconvex and twice continuously differentiable functions. The underestimators are derived by augmenting the original nonconvex function by a nonlinear relaxation function. The relaxation function is a separable convex function, that involves the sum of univariate parametric exponential functions. An efficient procedure that finds...

متن کامل

Global Optimality Principles for Polynomial Optimization Problems over Box or Bivalent Constraints by Separable Polynomial Approximations∗

In this paper we present necessary conditions for global optimality for polynomial problems over box or bivalent constraints using separable polynomial relaxations. We achieve this by completely characterizing global optimality of separable polynomial problems with box as well as bivalent constraints. Then, by employing separable polynomial under-estimators, we establish sufficient conditions f...

متن کامل

Applying a Newton Method to Strictly Convex Separable Network Quadratic Programs

Introduction This paper describes the application of Newton Method for solving strictly convex separable network quadratic programs. The authors provide a brief synopsis of separable network quadratic programming and list the various techniques for solving the same. The main thrust of the paper is succinctly identified by the following: 1. Providing a generic subroutine that can be used by vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015